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1. The JUNO experiment

The Jiangmen Underground Neutrino Observatory (JUNO)
is the first multi-kton liquid scintillator (LS) detector ever
built. It will be completed by the end of 2024.

N

Top tracker and
calibration house

Water pool
~2400 20” PMTs

Earth magnetic
field compensation
coils

17611 20” PMTs &
25600 3” PMTs

Acrylic spherical
vessel filled with
liquid scintillator

i
il o “\' I

AN

I

.

,q Acrylic supporting
L nodes

Main goal: Neutrino Mass Ordering (NMO) measurement
with 3¢ in 6 years through reactor antineutrinos

Focus of this poster:

. Potential measurement of atmospheric neutrino

oscillation with LS detector

. The matter effects in atmospheric neutrino to boost

JUNO’s NMO sensitivity

. Relevant reconstruction status for energy, direction, and
particle ID of neutrino at GeV range
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Source of atmospheric neutrinos : interactions of cosmic particles in Earth’s atmosphere.

Typical range energy : 100 MeV — few TeV, isotropic distribution at E > 3 GeV.
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o Matter effects enhance neutrino oscillation and depend on neutrino energy E , direction 0 or baseline L , and matter density.

e Neutrino oscillation is modified with matter effect with NO, whereas for |0, matter effects appears in antineutrino oscillation.

e A novel directionality reconstruction method is developed for the atmospheric neutrino events in large homogeneous LS
detectors based on waveform analysis and machine learning (ML) techniques (Efficient-v2, DeepShere, PointNet++) [3].

e Features extracted from each PMT's waveform reflect the event's topological structure and carry information about the
event's direction, energy and flavor types: multi-purpose reconstruction.
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New Developments
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Conclusions

1. The methods for reconstructing neutrino energy, direction, and particle identity (flavor and neutrino or
antineutrino) in GeV range are developed in JUNO.

. The atmospheric neutrino data in JUNO has the potential to observe the neutrino oscillation.

3. Atmospheric neutrinos carry the imprints of NMO through different matter effects in neutrino and
antineutrino. Therefore, the synergy between reactor and atmospheric neutrino events will boost the
sensitivity of JUNO towards neutrino mass ordering.
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